A Pareto Front-Based Multiobjective Path Planning Algorithm
نویسنده
چکیده
Path planning is one of the most vital elements of mobile robotics. With a priori knowledge of the environment, global path planning provides a collision-free route through the workspace. The global path plan can be calculated with a variety of informed search algorithms, most notably the A* search method, guaranteed to deliver a complete and optimal solution that minimizes the path cost. Path planning optimization typically looks to minimize the distance traversed from start to goal, yet many mobile robot applications call for additional path planning objectives, presenting a multiobjective optimization (MOO) problem. Past studies have applied genetic algorithms to MOO path planning problems, but these may have the disadvantages of computational complexity and suboptimal solutions. Alternatively, the algorithm in this paper approaches MOO path planning with the use of Pareto fronts, or finding non-dominated solutions. The algorithm presented incorporates Pareto optimality into every step of A* search, thus it is named A*-PO. Results of simulations show A*-PO outperformed several variations of the standard A* algorithm for MOO path planning. A planetary exploration rover case study was added to demonstrate the viability of A*-PO in a real-world application. Keywords—multiobjective optimization; path planning; search algorithm; A*; Pareto; mobile robot; Mars rover
منابع مشابه
A Pareto Optimal D* Search Algorithm for Multiobjective Path Planning
Path planning is one of the most vital elements of mobile robotics, providing the agent with a collision-free route through the workspace. The global path plan can be calculated with a variety of informed search algorithms, most notably the A* search method, guaranteed to deliver a complete and optimal solution that minimizes the path cost. D* is widely used for its dynamic replanning capabilit...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملPareto-Based Multiobjective AI Planning
Real-world problems generally involve several antagonistic objectives, like quality and cost for design problems, or makespan and cost for planning problems. The only approaches to multiobjective AI Planning rely on metrics, that can incorporate several objectives in some linear combinations, and metric sensitive planners, that are able to give different plans for different metrics, and hence t...
متن کاملImprovement of Methanol Synthesis Process by using a Novel Sorption-Enhanced Fluidized-bed Reactor, Part II: Multiobjective Optimization and Decision-making Method
In the first part (Part I) of this study, a novel fluidized bed reactor was modeled mathematically for methanol synthesis in the presence of in-situ water adsorbent named Sorption Enhanced Fluidized-bed Reactor (SE-FMR) is modeled, mathematically. Here, the non-dominated sorting genetic algorithm-II (NSGA-II) is applied for multi-objective optimization of this configuration. Inlet temperature o...
متن کاملMultiobjective shortest path problems with lexicographic goal-based preferences
Multiobjective shortest path problems are computationally harder than single objective ones. In particular, execution time is an important limiting factor in exact multiobjective search algorithms. This paper explores the possibility of improving search performance in those cases where the interesting portion of the Pareto front can be initially bounded. We introduce a new exact label-setting a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.05947 شماره
صفحات -
تاریخ انتشار 2014